Databasing Drug Metabolites to Influence Design-Make-Test Drug Discovery Cycles

Christopher J. Kochansky

Merck & Co., Inc.

Pharmacokinetics, Pharmacodynamics, and Drug Metabolism (PPDM)

Metabolite Identification & Tissue Distribution Group

What is Design - Make - Test?

DESIGN

MAKE

Drug Metabolism Involvement Traditionally in Test Phase

- Improve Pharmacokinetics (PK)
 - Metabolic Stability and Intrinsic Clearance (MSIC; CL_{int})
 - Metabolite Identification to aid MSIC
- Improve Safety
 - Reactive Metabolite Trapping & ID

Early read on PK (or CL) via MSIC

Add another 1-2 Weeks; ~10 compounds / week

The Process of Metabolite Structure Proposal

release-3.1.7

- Interpret
- Report / Communicate
- Store / Search
- Design

- Mass Spec Independent
- Acquisition Independent
 - DDA Data Dependent Acquisition
 - DIA Data Independent Acquisition
 - MS^E (Waters)
 - SWATH (Sciex)
 Sequential Window ed Acquisition of All Theoretical Fragment lons
- In Silico Augmented
 - Site of metabolism prediction

Interactive Data Views in WebMetabase

	Name	▲ RT	miz	Mass shift	m/z diff (ppm)	Z	Area ABS	Area %	ion formula	Max score
	IS-Labetalol	2.96-42.97	329.1860-329.1865		1.68-2.98		1.23E051.39E05			
	M1 -164 RT=3.09	3.09	291.2065-291.2082	-164.0837	-5.280.66	1	1.56E05-42.94E05	11.60-45.49	[C ₁₇ H ₂₈ N ₂ O ₂ + H]*	408.9
	M2 +162 RT=3.12	3.12	617.3057617.3087	+162.0164	-2.97→1.89	1	4.23E031.83E04	0.31-3.34	[C ₃₂ H ₄₄ N ₂ O ₁₀ + H]*	540.8
0	M3 -28 RT=3.41	3.41	427.2584-427.2595	-28.0313	-0.82-1.82	1	8.66E031.05E05	0.65-19.19	[C ₂₅ H ₃₄ N ₂ O ₄ + H] ⁺	400.0
	M4 -14 RT=3.43	3.433.45	441.2747441.2756	-14.0157	-1.940.10	1	9.37E033.27E04	1.10-2.43	$[C_{26}H_{36}N_2O_4 + H]^+$	400.0
0	M5+16 RT=3.48	3.48-3.49	471.2855-471.2873	+15.9949	-4.17-+0.22	1	1.43E032.08E04	0.26-1.55	$[C_{27}H_{38}N_2O_5 + H]^+$	493.3
×										
	Substrate	3.61	455.2911-455.2918		-3.021.48	1	1.08E06-48.28E04	63.2615.11	[C ₂₇ H ₃₈ N ₂ O ₄ + H]*	

MD MOLECULAR DISCOVERY WebMetabase

release-3.1.7

Data Interpretation & More Informed Proposals

Communicating More Informed Structure Proposals via WebMetabase

- Metabolite chart
- Metabolic pathway
- Export structures in .sdf
 - in silico modeling
- Summary in PowerPoint

Metadata, chromatograms, metabolic pathway, table of metabolites, metabolite chart

make modifications before sending

add "appropriate" Metasite prediction

Multi experiment reporting via Search

Routine WebMetabase Use Began in 2015

- The "Users" today consist of:
 - mainly the MetID Scientists (~15)
 - a few ADME Principle Investigators
 - a few Medicinal Chemists
- The Data standard non-labeled in vitro MetID assay
 - microsomes or hepatocytes
 - generally 1-time point (15, 30, 60, or 120 min)
 - species comparison (typically 2-4 species)
 - − ~10 compounds per week
- ~600 Merck compounds across ~40 programs in WebMetabase

To Influence Tomorrow's Design... Need More Data and More Timely

- 2016 effort to...
 - acquire MSIC data via high resolution mass spectrometry (HRMS)
 - identify mass spectrometry platforms; identify CRO partners
 - automate software identification via MassMetasite / WebMetabase
 - visualize MetID data in tools like (IT & Structural Chemistry)

Influence Tomorrow's Design... with Ideating Tools in WebMetabase

 Three2D - CYP interaction modeling when positioning the site of metabolism next to the heme.

MetaDesign - replace metabolic soft spots with bioisosteres

Tomorrow's Drug Metabolism in Design - Make - Test... More Timely and More Info

- Auto-generated info...
 - Metasite augmented Markush
 - Three2D
 - MetaDesign
- Get info out of WebMetabase and...
 - into other predictive tools (e.g. ADMET workbench)
 - use for model dev (e.g. phase II conjugation prediction)
 - visualize with other data in Spotfire

In silico augmented proposal

Design proposal

Docking for CYP active site interaction(s)

Metabolite Databasing and Predictive Tools for Peptides are Trailing those for Small Molecules

- Design Make Test Challenge: oral bioavailable therapeutic peptides
- Potential Key understand the metabolic stability of these peptides within the body and in vitro systems that mimic bodily conditions
- Build Tools to aid therapeutic peptide Design-Make-Test cycles
 - process high resolution mass spec data of peptides
 - multi-charged, non-natural amino acid containing, stapled, etc.
 - identify metabolites possibilities large

 visualize, communicate, database, and even interrogate large sets of peptide metabolic stability data

Collaborative Project to Interrogate Metabolic Stability Data of Peptides

with Lead Molecular Design (LMD) and Molecular Discovery (MD)

- Merck internship to generate / provide metabolic stability data (parent loss and metabolite formation over time) for 30-40 peptides in variety of in vitro systems
 - No sharable data sets currently exist at Merck ("firewalled" or limited variables)
- PhD project of LMD to develop new peptide version of WebMetabase for viewing, searching, and data interrogation capabilities.

What Peptides to Study?

- Chang et al (2013) PNAS 110:E3445-3454:
 - 20+ analogs of stapled peptide ATSP-7041
 - Acteyl-LTF-X-EYWQL-Cba-Y-SAA-amide

Y = S-stereochemistry for alkenyl side chain (CH2-CH2-CH2-CH2) and α -methyl substitution

Wang et al. (2015) Mol. Pharmaceutics 12, 966-973:

Article

pubs. acs. org/molecular pharmaceutics

Toward Oral Delivery of Biopharmaceuticals: An Assessment of the Gastrointestinal Stability of 17 Peptide Drugs

Jie Wang, Vipul Yadav, Alice L. Smart, Shinichiro Tajiri, and Abdul W. Basit*

Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX London, U.K.

<u>Peptides</u>

Buserelin

Calcitonin (salmon)

Deslorelin

Glucagon

Gonadorelin

Goserelin

Histrelin

Leuprolide

Octreotide

Oxytocin

Secretin Human

Terlipressin

Lys-Vasopressin

Agency for

Science, Technology and Research

What Matrices or Systems to Study?

- MD wish-list has many human proteases
- In-house cookbook:
 - porcine pepsin and elastase
 - bovine trypsin and α -chymotrypsin
 - Simulated intestinal fluid (SIF) pancreatin
 - pancreatin has trypsin, amylase, and lipase
 - with and without protease (buffer controls)
- Matrices of interest
 - blood, plasma, and serum
 - tritosomes (lysosomal lysate)
 - intestinal contents (e.g. feces), microsomes, cytosol, S9
 - liver microsomes, cytosol, S9, lysosomes, homogenate
- Does species / gender of matrix matter?

The Process of Metabolic Stability

Proteases

Use of HP D300e ability to dispense nL of DMSO stock

release-3.1.7

- Interpret
- Report / Communicate
- Store / Search
- Interrogate
- Design

- Mass Spec Independent
- Data Acquisition Independent

Important MassMetasite Settings

Peptides in Wang et al. (2015) Mol. Pharmaceutics 12, 966-973

Peptides

Buserelin

Calcitonin (salmon)

Deslorelin

Glucagon

Gonadorelin

Goserelin

Histrelin

Leuprolide

Octreotide

Oxytocin

Secretin Human

Terlipressin

Lys-Vasopressin

pubs.acs.org/molecularpharmaceutics

Toward Oral Delivery of Biopharmaceuticals: An Assessment of the Gastrointestinal Stability of 17 Peptide Drugs

Jie Wang, Vipul Yadav, Alice L. Smart, Shinichiro Tajiri, and Abdul W. Basit*

Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX London, U.K.

LC Method Comparison

Wang et al.				
Column	Luna C18 150 x 4.6 mm, 5 um			
Temperature	33°C			
Injection Volume	50µL			
Flow rate	1 mL/min			
UV absorbance	214 nm			
Mobile Phase	Water (0.1%TFA)/acetonitrile (78:22)			
Stop Solution	3 volumes methanol			
HPLC System	Agilent Technologies, 1260 Infinity			
UV detector	Diode array model G1329B			
Pepsin Concentration	3.2mg/mL pH(25°C) 1.2			
Initial Peptide Concentration	0.67µM			
Run Time	≥18 min			

	ecu	
pl	narm	aceutics

Article

pubs.acs.org/molecularpharmaceutics

Toward Oral Delivery of Biopharmaceuticals: An Assessment of the Gastrointestinal Stability of 17 Peptide Drugs

Jie Wang, Vipul Yadav, Alice L. Smart, Shinichiro Tajiri, † and Abdul W. Basit*

Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX London, U.K.

In house				
Column	Aquity BEH C18, 100 x 2.1 mm, 1.7um,			
Temperature	60°C			
Injection Volume	3µL			
Flow rate	0.5 mL/min			
UV absorbance	N/A			
Mobile Phase	Water (0.1%FA) /acetonitrile (0.1%FA)			
Stop Solution	2 volumes 80:20 Acetonitrile:FA			
HPLC System	Waters Aquity			
Instrument	Thermo Scientific LTQ Orbitrap			
Pepsin Concentration	0.1mg/mL pH(25°C) 1.0-1.4			
Initial Peptide Concentration	10μΜ			

Time (min)	Flow (mL/min)	%A	%В
Initial	0.50	90	10
0.50	0.50	90	10
3.50	0.50	60	40
4.00	0.50	10	90
4.20	0.50	90	10
5.25	0.50	10	90
6.00	0.50	90	10

Parent Loss for Goserelin in Pepsin in Gastric Simulated Fluid

Wang et al.				
Pepsin Concentration	3.2mg/mL pH(25°C) 1.2			
Initial Peptide Concentration	0.67µM			
Parent Loss	~10%			

In House (intern Alison Bateman)				
Pepsin Concentration 0.1mg/mL pH(25°C) 1.0-1.4				
Initial Peptide Concentration	10µM			
Parent Loss	~10%			

Visualize Parent Loss (Goserelin) and Metabolite Formation in WebMetabase

Substrate

Matrix:

Pepsin in Simulated Gastric Fluid

Peptide:

Goserelin Exact Mass:1268.6414

Goserelin stability in different matrices over time

- · Manually plotted in excel
- WebMetabase can do if setup proper data input (protocol)

Frequency Analysis of Chymotrypsin Metabolism of Thirteen Wang et al. Peptides

Global results Detailed results						
Monomer C	Monomer N	Matrix Bondtype	Amount of times this bond was met	Amount of times this bond was broken once		
R N R	R O H	Chymotrypsin	6	6		
R NH 2	R NH S	Chymotrypsin	1	2		
H N HILL.	R NH 2	Chymotrypsin	2	2		
N. H.	R NH 2	Chymotrypsin	2	2		

Can One Harness a Peptide Database to Visualize Monomer Specificities with Respect to Cleavage?

http://merops.sanger.ac.uk/about/glossary.shtml#SUBSITE

Data Challenges and Next Steps to Aid Design

- Visualization and Usage!
 - big complicated molecules finite screen space
 - frequency analyses; structure-activity relationships (SAR)
 - data aggregation with use of software tools like Spotfire
 - linking / exporting data to other software tools
- Automation!
 - data generation need more data
 - incubation
 - metabolite identification (software <u>automated</u> MetID)
 - computation
 - small molecule CYP interactions
 - design

Acknowledgments

- Molecular Discovery and Lead Molecular Design
- Mark Cancilla and the PPDM Metabolite Identification & Tissue Distribution group
- Anthony Partridge, Tomi Sawyer, & A*STAR
- Rodger Tracy and Ken Koeplinger
- Alison Bateman and Tatiana Radchenko
- Kevin Bateman and Conrad Raab

