Exploiting In Silico Techniques for Human Phase I Metabolism Prediction with Smartphone

Gabriele Cruciani, University of Perugia

A xenobiotic is a chemical which is found in an organism but which is not normally produced or expected to be present in it

How does the body protect itself against xenobiotics?

 By preventing xenobiotics from entering into the bloodstrem or organs

· By physical elimination

By chemical elimination

Absorption or Distribution

Excretion

Metabolism = biotransformation

The xenobiotic is transformed in the body into products (metabolites) which are usually more water-soluble and easier to excrete.

ADME

Chemical description 01100011100010101

ADME

Gabriele Cruciani, Perugia University

P450 enzymes are not new entities in organic synthesis

Example:

in sterol biosynthesis P450 can oxidise unreactive methyl groups in the presence of double bonds

Metabolomics/lipidomics signal interpretation

WARNINGS

TOO GOOD!...DRUG METABOLITES EFFECT (lipid impairment associated to drugs)

METAB DRUG 1

METAB DRUG 2

DEDICATED SOFTWARES FOR UNTARGETED LIPIDOMICS

Today MetID – the HITROXEN approach

Semi-automatised procedure for MetID profiling

Full MetID - 20 compounds/day (report included)

Phase I & II metabolism

Phase I metabolism by CYPs

 \smile ıı

Phase I & II metabolism

Gabriele Cruciani, Perugia University

Phase I & II metabolism

Gabriele Cruciani, Perugia University

P450 FMO AOX

Biotransformations (in silico) of ML3403

P450 FMO AOX

Potential biotransformations (in silico) of MC041

P450 FMO AOX

$$3 \times 0$$
 $N \rightarrow N$
 $2 \rightarrow 0$

Exp. biotransformations (in silico) of MC041

Metabolism of MC041

$$\mathbf{P}_{\text{SoMi}} = [(1+\mathbf{w}_{\text{e}}) \cdot \mathbf{Ei}] \cdot [(1+\mathbf{w}_{\text{r}}) \cdot \mathbf{Ri}]$$

Exposure reactive atom to reactive center Heme, FAD, Mo Cu++

Atom reactivity (RAE, nucleofilicity, elettrofilicity ...)

Cruciani et al., J.Med.Chem, 2014

Holistic approach

Not 6-dimensional ... but still dimensionally demanding

Background 1tqn *holo* 30 ns 16000 wat 6 weeks GPU 35 wat

MetaSite 5.0

New reactivity and exposure integrated

Results (on compounds with well-known metabolite ranking)

st. validation method (top three solutions)		new validation method (precise ranking)
	2D6	
98% correct solutions		80% correct solutions
	<i>2C9</i>	
96% correct solutions		78% correct solutions
	<i>3A4</i>	
94% correct solutions		75% correct solutions

MetaSite 5.0

Results (on compounds with well-known metabolite ranking)

st. validation method (top three solutions)

new validation method (precise ranking)

FMO

100% correct solutions

95% correct solutions

AOX

100% correct solutions

95% correct solutions

Substrate selectivity

FMO

82% correct solutions

AOX

85% correct solutions

2D representation of CYP 2D6 active site

MetaSite approach
2D representation of CYP 2D6 active site

CYP450 FMOx **AOX** ÇНз H₃C N H ·CH₃ R_3 **HEME** hydroperoxyflavin nucleophile attack electrophile to electrophile position radical EXPOSITE

CYPs reactivity module

$$P_{\text{SoM},i} = (1 + w_{\text{e}})E_{i}(1 + w_{\text{r}})R_{i}$$

0.00

prediction for 150 new fragments

$$P_{\text{SoM},i} = (1 + w_{\text{e}})E_{i}(1 + w_{\text{r}})R_{i}$$

Porting to android and iOS

Get it on Google play

<u>client-server</u> application: Calculations are performed on a cloud or remote server

Gabriele Crucia

